Honeyd Detection via Packet Fragmentation

Jon Oberheide and Manish Karir
Networ king Research and Devel opment
Merit Network Inc.

1000 Oakbrook Drive
Ann Arbor, Ml 48104
{jonojono,mkarir} @merit.edu

Abstract

In this paper we describe a serious flaw in a popular
honeypot software suite that allows an attacker to
easily identify the presence and scope of a deployed
honeypot. We describe in detail both the flaw and
how it can be used by an attacker. Our technique
relies on a set of specially crafted packets which are
able to elicit a response from a Honeyd-based hon-
eypot. Simple experiments show that this method
is extremely accurate and effective in detecting the
presence and the scope of a Honeyd deployment.
Moreover, due to the low level of effort and band-
width required, it is possible to perform honeypot
reconnaissance easily prior to launching a malicious
attack on a network, even for large address spaces.
We also discuss a simple fix for this flaw as well as
other factors that can affect the effectiveness of our
approach.

1 Introduction

Honeypots play an extremely important role in In-
ternet security. In conjunction with distributed
Internet sensors[1][7][11][12], honeypots are able
to provide early visibility into emerging security
threats, attack tools, and evolving attack techniques.
However, just like Internet sensors, honeypot de-
ployments must remain hidden in order to be useful.
An attacker who is aware of the location of a mon-
itor can avoid it, mislead it by feeding it erroneous
information, or even target the monitor itself.
Recent work has further highlighted the impor-
tance of maintaining the anonymity of Internet sen-
sors. In two separate studies, [6] and [13], the au-

thors have presented probe/response techniques to
illustrate the inadequacy of current monitoring sen-
sor deployments. In these papers the authors de-
scribe how potential attackers can easily determine
the location and scope of currently deployed sen-
sors. These detection algorithms illustrate the im-
portance of sensor anonymity.

In addition to protecting the anonymity of cur-
rently deployed Internet monitoring sensors, it is
also important to ensure that the monitoring soft-
ware and tools themselves are not vulnerable to at-
tack. Detecting and patching software vulnerabili-
ties in these systems are extremely critical as they
themselves may be compromised or can reveal the
presence and extent of the monitoring system. One
particular area where vulnerabilities have frequently
been found in the past is the handling of packet frag-
ments. Packet fragment reassembly has long been a
source of various security problems related to vari-
ous IP stacks. Reported problems include the Tiny
Fragment Attack, Overlapping Fragment Attack as
well as their variants [3] [4]. Attacks can be easily
initiated by crafting malicious packet fragments that
can bypass firewall rules. Over the years, significant
attention has been paid to these problems such that
most modern operating systems are able to correctly
handle maliciously crafted packet fragments. How-
ever, due to this behavior, any system that does not
correctly handle packet fragments can be quickly
recognized by this non-standard behavior. The Hon-
eyd detection procedure described in this paper is
based upon maliciously constructed fragments com-
bined with an incorrect implementation of the frag-
ment reassembly procedure in Honeyd.

#define DIFF(a,b) do { \
if ((a) < (b)) return -1; \
if ((a) > (b)) return 1; \
} while (0)

int

fragcompare(struct fragment *a, struct fragment *b

DIFF(a->ip_src, b->ip_src);
DIFF(a->ip_dst, b->ip_dst);
DIFF(a->ip_id, b->ip_id);

return (0);

Figure 1: Honeyd’s ipfrag.c

In this paper we describe a procedure by which
an attacker can easily determine if a network is run-
ning Honeyd [9], one of the most commonly used
honeypot software tools, as well as the range of ad-
dresses the honeypot is monitoring. An attacker can
run a remote scan that will reveal the presence and
scope of a Honeyd-based honeypot. This vulnera-
bility places the effectiveness of several monitoring
system that rely on Honeyd at risk. The Network
Situational Awareness (NetSA) Internet monitoring
system described in [12] is an excellent example of
a large scale system that relies on Honeyd.

The rest of this paper is organized as follows: In
Section 2 we describe in detail the Honeyd vulner-
ability that allows our detection technique to work,
as well as a fix of this vulnerability; Section 3 con-
tains a description of a proof-of-concept tool that
can be used to scan a network for Honeyd deploy-
ments. We also describe some of our experiments
and discuss some related issues; Finally, Section 4
provides our conclusions and ideas for future work.

2 Honeyd Virtual Honeypot Software

The Honeyd project [10] was initially developed by
the Center for Information Technology Integration
(CITI) at the University of Michigan. Honeyd al-
lows users to configure virtual honeypots on a net-
work and monitor their activity to gain insight into
developing security threats. The Honeyd software
is publicly available and widely used by various
threat tracking and monitoring projects around the
world. Attackers can be tricked into interacting with
a Honeyd honeypot as if they were interacting with
avulnerable host. This interaction can be monitored

and provides invaluable data to security researchers.
Honeyd is generally used in conjunction with an-
other freely available utility called arpd [2], which
allows a single host to monitor multiple addresses
on a network by responding to ARP requests for un-
claimed IP addresses.

In order to avoid being fingerprinted and identi-
fied based on the host operating system that it is run-
ning on, the Honeyd software interacts directly with
the network. Therefore it is responsible for perform-
ing its own packet fragment reassembly, and does
not rely on packet fragment operations of the host
operating system. In the following subsections we
describe a flaw in the packet fragment handling code
of Honeyd as well as a solution to fix the problem.

2.1 1P Fragment Reassembly

According to the Internet Protocol standard specifi-
cation [5], a correct IP stack implementation must
identify corresponding fragments by matching the
source address, destination address, identification
number, and protocol number. Figure 1 shows the
relevant section of code from the Honeyd source
code. The fragcompare() function is responsible for
determining whether a fragment should be reassem-
bled. The figure clearly shows that the the func-
tion is only performing a comparison on the source
and destination IP addresses and the IP identifica-
tion number. The protocol number is not being used.
The end result is that Honeyd will incorrectly re-
assemble fragments that have a matching source ad-
dress, destination address, and identification num-
ber, but a differing value in the protocol field. This
flaw does not normally create a problem in the be-
havior or functionality of the honeypot, as it is ex-
tremely unlikely that a host with a modern network
stack would send IP packet fragments where only
three of the four fields would match. However, it is
trivial to craft customized packet fragments which
will trigger this bug and result in packet reassembly
occurring where it should not.

One way to expose this flaw is to splita TCP SYN
packet into several fragments and set the protocol
field of the IP header of one of the fragments to
some protocol other than TCP. A stack that correctly
implements IP fragment reassembly on receiving
this collection of fragments will end up dropping

them, as it will identify the packet with the differ-
ing protocol number as not belonging to the oth-
ers. However, Honeyd on the other hand will re-
ceive these fragments and reassemble them into a
complete TCP SYN packet. It will then respond
to the sender of the fragments with a SYN/ACK.
An attacker can send out these fragments to a large
number of hosts and simply listen for any return-
ing SYN/ACK packets. Since this reassembly flaw
does not exist in most common operating system IP
stacks, the attacker can be reasonably suspicious of
any machines that do respond as they are likely to
be Honeyd-based honeypots.

2.2 Patching Honeyd

As seen in Figure 1, the fragcompare() function de-
termines whether the attributes of two fragments are
identical but does not compare the protocol num-
ber. Eliminating the vulnerability in Honeyd is as
simple as including the protocol number field into
the fragcompare() function. We have provided the
maintainers of Honeyd with a patch that implements
this fix and expect that this issue will be resolved
quickly. Until this patch is deployed, older versions
of Honeyd will continue to be vulnerable to detec-
tion by attackers via a simple scan.

3 Scanner
ments

Implementation and Experi-

In order to demonstrate the feasibility of utilizing
the flaw in Honeyd’s reassembly for detection pur-
poses we decided to build a proof-of-concept scan-
ner. In the following subsection we describe some
details about how our scanner operates as well as
some experiments we have been able to conduct.
We also discuss some related issues that affect the
success of our scanner.

3.1 winnie- A Honeyd Scanner

Using winnie, we were able to perform some ex-
periments in order to determine whether the flaw
in Honeyd could actually be triggered in a remote
scan. Winnie allows us to automate the construc-
tion of the fragmented packets as well as the scan-
ning of target networks. It uses routines provided

[root@nsl root]# ./winnie 198.108.62.0/24
pcap listening on eth® with filter "tcp and src net 198.108.62.0/24
and tcp[13] = 18"

winnie - honeyd scanner

target range: 198.108.62.0/24
scanning 256 unique addresses
repeating in max chunks of 256

scanning to begin in:
e ¢

pASE
Lo+

scanning 256 addresses at 198.108.62.0
repeating 256 addresses at 198.108.62.0
*** response from 198.108.62.144

*** response from 198.108.62.145

*** response from 198.108.62.146

*** response from 198.108.62.147

scanning complete, 256 addresses took 10.453581 seconds
waiting for delayed replies...

exiting!

Figure 2: Winnie sample output

by libdnet to build and inject the necessary packet
fragments into the network and libpcap to watch for
the resulting SYN/ACK replies.

The basic operation of winnie is simple. We start
by constructing a valid TCP SYN packet split into
two fragments. The entire IP packet payload is 32
bytes, 20 bytes of TCP header and 12 of random
data. The 32 bytes of payload are split into two frag-
ments of 24 bytes and 8 bytes, each having identi-
cal randomly generated IP identification numbers.
For the first fragment, the protocol number in the
IP header is set to TCP (6). For the second frag-
ment, we use an alternate protocol number in the IP
header. We chose UDP (17) as the alternate protocol
number as opposed to some other atypical protocol
that could possibly be filtered out on the way to the
target. This fragment pair, when sent to any RFC-
conforming host, would not be reassembled by the
IP stack into a valid SYN due to the differing proto-
col numbers in the IP header. However, when sent
to a host running Honeyd, the Honeyd software will
reassemble the two fragments into a valid SYN re-
quest and therefore respond back with a SYN/ACK.

An example of tcpdump output during a winnie
scan can be seen in Figure 3, showing the outgoing
fragment pairs with identical identification numbers
but differing protocol numbers. In the snippet pro-
vided, one can see that there is no response from
hosts 142 or 143, but there are SYN/ACK replies
from hosts 144 and 145, indicating that they are run-
ning Honeyd.

6:59:24.860101 67.101.10.34.14745 > 198.108.62.142.ssh: S

825593105: 2825593109 (4) win 5840 (frag 14920:24@0+)

6:59:24.860154 67.101.10.34 > 198.108.62.142: udp (frag 14920:8@24)
6:59:24.880091 67.101.10.34.46523 > 198.108.62.143.ssh: S

159669245: 4159669249 (4) win 5840 (frag 17554:24@0+)

6:59:24.880142 67.101.10.34 > 198.108.62.143: udp (frag 17554:8@24)
6:59:24.900091 67.101.10.34.22194 > 198.108.62.144.ssh: S
912179748:1912179752(4) win 5840 (frag 30473:24@0+)

6:59:24.900143 67.101.10.34 > 198.108.62.144: udp (frag 30473:8@24)
6:59:24.920092 67.101.10.34.23783 > 198.108.62.145.ssh: S
013482849:1013482853(4) win 5840 (frag 57629:24@0+)

6:59:24.920144 67.101.10.34 > 198.108.62.145: udp (frag 57629:8@24)
6:59:24.924290 198.108.62.144.ssh > 67.101.10.34.22194: S 0:0(0) ack
912179749 win 16000 <mss 1460>

6:59:24.924294 67.101.10.34.22194 > 198.108.62.144.ssh: R
912179749:1912179749(0) win 0 (DF)

6:59:24.939426 198.108.62.145.ssh > 67.101.10.34.23783: S 0:0(0) ack
013482850 win 16000 <mss 1460>

6:59:24.939429 67.101.10.34.23783 > 198.108.62.145.ssh: R
013482850:1013482850(0) win 0 (DF)

Figure 3: tcpdump trace of winnie scan

3.2 Experiments

In order to determine whether a remote scan would
be successful, we conducted the following exper-
iment. We used Honeyd to setup a honeypot on
Merit’s network, limited to only five unused IP ad-
dresses. The scans were conducted from an off-
site PC at a remote location. Through this experi-
ment we wanted to determine whether other devices
on the network would respond to our scan thereby
resulting in false positives. The network we were
scanning was a fairly heterogeneous network, con-
sisting of Windows, Linux, BSD, Mac, and Solaris
based computers as well as network printers and
copiers. The network was a /14 network which con-
sists of 2'® total IP addresses. Winnie was used to
scan each individual IP address.

The total scan took roughly three hours to com-
plete. All five IP addresses that had been configured
with Honeyd were correctly identified. Among all
the different types of devices configured on the net-
work, there was only one false positive report. We
discuss this as well as other factors that can affect
the effectiveness of winnie in section 3.4.

Figure 2 shows sample output from an experi-
ment where we scan a /24 subnet. Our scan consists
of two fragments with an ethernet (14 bytes) and IP
header (20 bytes) each and a total of 32 bytes of
payload for each IP address. This implies that we
create 100 bytes of scan traffic for each IP address
we scan. Given that we scan each IP address twice
to increase accuracy, this translates to 51200 bytes
of traffic in order to scan a /24 subnet. The time
to scan the /24 subnet is approximately 10 seconds,

therefore we generate roughly 40 Kbps of scan traf-
fic.

3.3 Scan Detection

An important issue when developing a scanning tool
is the amount of network resources used and the ac-
cess patterns that may alert sensors watching the
network. While winnie was designed as a simple
proof-of-concept and does not contain any inten-
tional routines to avoid detection, the nature of the
vulnerability actually lends itself to low detection
risk. In fact, as the two fragments sent by winnie
are never reassembled at hosts with a correct stack,
they will simply be dropped silently when the re-
assembly timer expires. By having a total payload
size of 32 bytes and only eliciting a response from
the targets of interest, the amount of noise generated
on the network is greatly reduced.

A sensor watching for standard TCP SYN port
scans may not pick up winnie’s scans as the sensor’s
stack would not see a valid SYN packet passed up
from the IP layer. However, a sensor that is watch-
ing for unusual IP fragments on the network may,
in fact, detect our scan. In our experimentation, we
did come across at least one IDS sensor that was
tripped because of the suspiciously small fragments.
However, even if a network operator is alerted to
the strange fragmented scanning, the damage has
already been done as the attacker will have gleaned
valuable information regarding any deployed hon-
eypots.

3.4 Discussion
341 ARPIssues

arpd is a tool that is often used in conjunction with
Honeyd to respond to ARP requests for unallo-
cated IP addresses within an address space. When
arpd sends out its ARP reply to claim an IP ad-
dress, it addresses the reply to the broadcast address
(Ff:FE-FF.Ff.7F.6). While some hosts accept this re-
ply and record the entry in their ARP cache, others
will reject broadcast replies in an attempt to prevent
ARP spoofing attacks. To resolve this issue, we
modified arpd to include an alternate mode where
ARP replies are addressed only to the hardware ad-

dress of the initial requester as opposed to the broad-
cast address.

Another feature of arpd is to send out its own
broadcast ARP request to be sure that an IP address
is truly unused before claiming it with an ARP reply.
During this discovery stage, winnie’s fragmented
packets may be dropped as the gateway device does
not receive an ARP reply in time. To compensate for
this problem, winnie was modified to scan a block
of 256 addresses of the target network and then re-
peat the scan in the hope that the first scan of an ad-
dress will cause arpd to begin its discovery process
and by the time the repeat scan comes around, arpd
will have replied and the gateway device will have
the ARP entry cached. This issue is illustrated in
Figure 2 which shows that the first scan did not find
any instances of Honeyd but the repeat scan suc-
cessfully detected them.

3.4.2 Packet Normalization

Another issue that can hinder the effectiveness of
winnie is inline devices that perform packet normal-
ization or reassembly, such as OpenBSD’s PF and
norm [8]. Traffic normalizers are often deployed
to prevent attacks and host fingerprinting resulting
from various ambiguities in network stacks. When
the fragments sent by winnie reach a normalizer,
they will be correctly dropped as invalid fragments.
The existence of such a device in the path to the tar-
get host may be unknown and is an important issue
to keep in mind when performing Honeyd detection
experiments.

3.4.3 Ethereal Packet Fragment Reassembly

During our experimentation, we also discovered
that Ethereal, a popular protocol analyzer, suffered
the same reassembly issues as Honeyd. While this
bug may be frustrating when attempting to analyze a
trace containing fragments incorrectly assembled by
Ethereal, it is not terribly concerning. A patch was
provided to the development mailing list on January
2nd and was subsequently committed on the 4th.

3.4.4 FalsePostives

It is possible to receive false positive responses
when using winnie from any host whose IP re-

assembly routines contain the same flaw as ob-
served in Honeyd. One such host discovered in
our scanning experiments is HP’s Lights-Out re-
mote management device. However, from an at-
tacker’s point of view, any host responding to the
malformed fragments is not an ordinary host with a
RFC-conforming stack. While the attacker may not
be absolutely sure that the host is indeed a honey-
pot, they do know that it is an anomalous host and
should avoid targeting it in an attack.

4 Conclusions and Future Work

In this paper we have presented a technique that can
be used by potential attackers to detect the presence
of any Honeyd-based honeypots. They can subse-
guently modify their attack to either avoid the hon-
eypot or send misleading traffic to the honeypot to
hide their actions. The technique outlined in this
paper is based on a flaw in the Honeyd packet frag-
ment reassembly procedure.

We have implemented a proof-of-concept tool
called winnie that demonstrates how an attacker can
exploit this flaw. We have also presented results
from simple experiments that illustrate the feasibil-
ity of performing network reconnaissance in order
to detect Honeyd-based honeypot deployments. Our
experiments reveal that it would only take an at-
tacker less than 3 hours to scan a medium to large
network containing 28 hosts with a low amount of
scan traffic. During our experiments we also uncov-
ered some mitigating factors that affect and limit the
scope of this vulnerability. We have implemented a
patch for Honeyd that fixes this security flaw and
have provided it to the maintainers of the Honeyd
suite.

We are looking into the feasibility of conduct-
ing large scale Internet wide scans to detect un-
patched Honeyd implementations. This would be
an interesting experiment in order to determine the
scope and coverage of various Honeyd-based hon-
eypot deployments worldwide.

References
[1] D. MOORE, C. SHANNON, G. VOELKER, AND S. SAV-

AGE. Network Telescopes: Technical Report. CAIDA
Technical Report (2004).

(2]

(3]

(4]

[5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

D. SoNG AND N. PRoOvoOsS. arpd.
http: //mww.honeyd.org/tool s.php (Feb 2003).

G. ZIEMBA, D. REED, AND P. TRAINA. RFC: 1858
- Security Considerations for IP Fragment Filtering.
http: //mww.ietf.org/rfc/rfc1858.txt (Oct 1995).

I. MILLER. RFC: 3128 - Protection Against
a Variant of the Tiny Fragment Attack.
http: //www.ietf.org/rfc/rfc3128.txt (June 2001).

IETF. RFC: 791 - Internet Protocol DARPA
Internet Program Protocol Specification.
http: //mww.ietf.org/rfc/rfc791.txt (Sep 1981).

J. BETHENCOURT, J. FRANKLIN, AND M. VERNON.
Mapping Internet Sensors with Probe Response Attacks.
In Proceedings of the 14th USENIX Security Symposium
(Aug 2005), 193-208.

M. BAILEY, E. COOKE, F. JAHANIAN, J. NAZARIO,
AND D. WATSON. The Internet Motion Sensor: A Dis-
tributed Blackhole Monitoring System. In Proceedings
of Network and Distributed System Security Symposium
(Feb 2005).

M. HANDLEY, C. KREIBICH, AND V. PAXSON. Net-
work Intrusion Detection: Evasion, Traffic Normaliza-
tion, and End-to-End Protocol Semantics. In Proceedings
of the 10th USENIX Security Symposium (Aug 2001).

N. PRovos. A Virtual Honeypot Framework. In Pro-
ceedings of the 13th USENIX Security Symposium (Aug
2004).

N. PrRovos. Honeyd Project. http://www.honeyd.org (Jan
2005).

TEAM CYMRU. The darknet proejct.
http: //mww.cymru.com/Darknet (Jun 2004).

V. YEGNESWARAN, P. BARFORD, AND V. PAXSON. Us-
ing Honeynets for Internet Situational Awareness. In Pro-
ceedings of HOTNETS (Nov 2005).

Y. SHINODA, K. IKAI, AND M. ITOH. Vulnerabilities of
Passive Internet Threat Monitors. In Proceedings of the
14th USENIX Security Symposium (Aug 2005), 209-224.

